Synthesis of new thiazolo-pyrrolidine–(spirooxindole) tethered to 3-acylindole as anticancer agents

Mohammad Shahidul Islam a, Hussien Mansur Ghawas a, Fardous F. El-Senduny b, Abdullah Mohammed Al-Majid a, Yaseen A.M.M. Elshaier c, Farid A. Badria d, Assem Barakat a,e,⁎

a Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
b Department of Chemistry, Faculty of Science, Mansura University, Mansura, Egypt
c Department of organic and medicinal chemistry, Faculty of Pharmacy, University of Sadat City, Menofia, Egypt
d Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
e Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrimibia, Alexandria 21321, Egypt

ARTICLE INFO

Keywords:
Spirooxindole
1,3-dipolar cycloaddition
Azomethine ylide
Anticancer activity
LE
LLE
Molecular docking

ABSTRACT

Anticancer therapeutics with profiles of high potency, low toxicity, and low resistance is of considerable interest. A new series of functionalized spirooxindole linked with 3-acylindole scaffold is reported, starting from chalcones derived from 3-acetyl indole with isatin, and l-4-thiazolidinecarboxylic acid. The reactions proceeded regioselectivity, stereoselectivity, without side products in high yield (71–89%). The new spirooxindole hybrids have been evaluated in vitro for their antiproliferative effects against colon cancer (HCT-116), hepatocellular carcinoma (HepG2) and prostate cancer (PC-3). The selectivity of their activity was evaluated. Some of the synthesized compounds showed considerable anticancer activities. Compound 4k proved to retain a high cytotoxic activity and selectivity against colon cancer cells HCT-116 (IC50 = 7 ± 0.27µM, SI: 3.7), and HepG2 (IC50 = 5.5 ± 0.2µM, SI: 4.7) in comparison to (IC50 = 12.6 ± 0.5, SI: 0.4 and 5.5 ± 0.3µM, SI: 0.9, respectively). Compound 4k was less active (IC50 = 6 ± 0.3µM, SI: 4.3) than cisplatin (IC50 = 5 ± 0.56µM, SI: 1.0) but showed greater selectivity towards prostate cancer cells PC-3 in comparison to cisplatin. The details of the binding mode of the active compounds were clarified by molecular docking. Ligand Efficiency (LE) and Ligand Lipophilic Efficiency (LLE) were evaluated and revealed that compound 4k had acceptable value.

1. Introduction

Cancer is the second cause of death worldwide after heart diseases according to the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute [1,2]. The estimated new cases in colon cancer in both sexes are 95,520 (47,700 in men and 47,820 in women), followed by 40,710 (29,200 in men and 11,510 in women) new cases in liver cancer. The prostate cancer new estimated cases in 2017 were reported to be 161,360 and expected deaths were 26,730 [2]. Despite the available chemotherapeutic, hormonal or radiotherapy for treating cancer, there is relapse in the disease and acquire of resistance of recurrent disease. Therefore, there is still need for the discovery of alternative drugs with less side effects to the normal cells. Colon cancer is the second cause of deaths among cancer types in men and the 3rd in females [2]. Different factors are attributed to the development of colorectal cancer. Among them, dietary components (high alcohol consumption, low methionine and folate intake) [3], obesity [4] and non-steroidal anti-inflammatory drugs [5]. Chemotherapy is the most common used method in treating colorectal cancer but in metastatic cancer, the chemo-resistance emerge leading to the failure of chemotherapy [6]. Therefore, there is an argent need for discovering alternative options for treatment of colorectal cancer.

Liver cancer is considered as the 5th cause of deaths among men in 2017 and the 8th in female [2]. Food contamination with aflatoxins carcinogen [7], hepatitis B and C viruses [8–10], alcohol intake [11] even the non-alcoholic fatty liver disease are considered as the major contributors for the development of liver cancer. The first line in liver treatment is the surgical resection followed by conventional chemotherapy and immunotherapy [12]. At advanced stages, trans-arterial chemo-embolization (TACE) and trans-arterial radio-embolization or systemic chemotherapy are applied in order to increase the survival of the patient [13]. Despite the varieties of the offered options in the liver cancer treatment, the resistance of cancer cells still is an obstacle in the increase of curative rate. Therefore, there is a need for finding new...
Prostate cancer is the 3rd cause of deaths due to malignancies and its incidence rate is high in modern industrialized countries \[2,14\]. Family history with prostate cancer is linked to the high incidence rate due to genetic predisposition \[15\]. Moreover, dietary factors are also risk factors for prostate cancer development \[18\]. Chemotherapy and hormonal therapy are among the available treatment regimen for prostate cancer \[19\]. The metastatic disease usually respond to androgen-deprivation therapy. However the relapse of the disease in patients within one and half to two years \[20\] leading to the poor survival of patients due to the emergence of resistance. Finding new leads in treating prostate cancer is highly required. Mutated or deleted p53 is highly correlated to the poor prognosis of different types of aggressive cancers \[21–32\]. Therefore, reactivation of p53 pathway is a valuable target for treating different kinds of cancers. Reactivation of p53 by blocking the MDM2-p53 interaction using non-peptide small molecules is an exciting new strategy for treatment of cancer. Under normal conditions, MDM2, ubiquitin ligase enzyme, keeps p53 level low by inducing the degradation of p53 \[21\]. Under DNA damage, p53 is phosphorylated and is released from its MDM2 inhibitor and translocated to the nucleus where it promotes the expression of DNA repair genes. If the DNA damage is unfixable and severe, p53 induces the expression of apoptotic genes and the cell cycle will be arrested and undergoes the programmed cell death apoptosis \[22,23\]. Therefore, discovery of small non-peptide molecules for activation of p53 is highly desirable.

Spirooxindole alkaloids have been identified as a promising anticancer agent due to the excellent ability to bind with several cellular receptors \[33,34\]. Especially, the tetra-substituted carbon at position 3 of the oxindole or spirooxindole framework has been found as a core structure in a large family of unnatural/natural heterocyclic bioactive compounds with different pharmacological targets (e.g., spirotryprostatin A, rhynchophylline, coerulescine, horsfiline, elacomine, and mitraphylline, etc., Fig. 1). Spirotryprostatin A, a natural product extracted from *Aspergillus fumigatus*, is responsible for disruption of microtubule assembly and inhibition of serotonin receptor \[35,36\]. The simplest example in nature for spirooxindole alkaloid is coerulescine and exhibits a local anesthetic effect \[37,38\]. Additionally, mitraphylline and rhynchophylline are now in advanced preclinical studies as antioxidant and antigenotoxic drugs \[39,40\]. Naturally or synthetically spirooxindoles exhibit different biological activities such as anticancer, antimycobacterial \[41\], antinociceptive, contraceptive \[42\], antifungal \[43\], acetylcholinesterase \[44\] inhibition activities. MDM2, p53 tumor suppressor regulator, is a target for spirooxindole derivatives such as MI-888, MI-219, and NITD609 \[45–49\]. Rhynchophylline and isorhynchophylline showed neuroprotective activities via the noncompetitive inhibition for N-methyl-D-aspartate (NMDA) receptor \[50\].

Various synthetic derivatives of spirooxindole have been produced in an attempt to obtain more potent anticancer agents profile intact \[51\]. In this regard, we have synthesized a new series of the spirooxindole-based frameworks. The skeleton is constructed from scaffolds; (1) spirooxindole moiety, (2) thiazolo-pyrrolidine system, (3) 3-acylindole ring (Fig. 2). Their anticancer activities against colon cancer (HCT-116), liver cancer (HepG2) and prostate cancer (PC-3) were determined. Their cytotoxicity against normal kidney epithelial cells extracted from an African green monkey was also evaluated (Vero cells). The possible molecular binding with MDM2-p53 complex as well as lipophilicity were investigated.

2. Results and discussion

2.1. Synthesis of 4a–n

The use of low cost, one-pot reaction, and readily available core structure for the preparation of highly functionalized complex molecules is of high importance in organic chemistry. The target spirooxindole analogues were synthesized using a powerful method of multicomponent reactions (Scheme 1).
The chalcone 1a–n was synthesized from 3-acetyl indole with aldehydes according to our previous reported method [51]. 14 spirooxindole derivatives 4a–n were selectively synthesized by the one-pot reaction of chalcone derivative 1a–n, active carbonyl compounds (isatin, 3), and secondary amino acid (L-4-thiazolidinedicarbonyl acid, 2) in high yield (71–89%) in boiling MeOH for 1.5–2.0 h (Scheme 1). The result is summarized in Table 1. All spectrophotometric tools including 1H NMR, 13C NMR, mass spectrometry (MS), infrared (IR) spectroscopy, elemental analysis is provided in the supplementary information to confirm the assignment of the chemical structures of the desired targets.

The key intermediate for the three component reaction is the formation of azomethine ylide (isatin and carboxylic acid group of t-thioproline). The dipolar cycloaddition reaction of azomethine ylide therefore preferably proceed via the E2 β-exo transition state (Scheme 2). This reaction, which sets four contiguous stereogenic centres, constructs the entire spirooxindole moiety in a single and a simple operation.

2.2. Biological activity

In order to evaluate the possible anticancer activity of the new series of spirooxindole derivatives, an initial screening was performed against colon (HCT-116), liver (HepG2) and prostate (PC-3) cancer. Additionally, the selectivity to cancer cells rather than normal cells was evaluated and compared to the standard chemotherapeutic drug cisplatin. The results showed that all tested new compounds have variable anticancer activities. Compound 4k (IC50 = 7 ± 0.27 µM, Table 2) was the most active one against colon cancer cells in comparison to cisplatin (IC50 = 12.6 ± 0.5 µM). Compound 4k was highly selective to colon cancer cells (SI > 3.7) while cisplatin showed less selectivity (SI = 0.4). Compound 4b, 4d, 4h, and 4j were also more active and more selective than cisplatin towards colon cancer cells (Table 2).

Among the tested new compounds against hepatocellular carcinoma, only compound 4k (IC50 = 5.5 ± 0.2 µM, Table 3) showed activity equal to the standard cisplatin but again with superior selectivity to cancer cells (SI > 4.7 vs SI = 0.9, respectively). Despite that, compounds 4d, 4j, 4f and 4h were less active than cisplatin against hepatocellular carcinoma, their selectivity was greater (SI > 3.7, 3.29 and 2.9, respectively) (Table 3) than cisplatin (SI = 0.9).

In between the tested compounds 4d, 4k, 4j, 4f and 4h against PC-3 revealed the following activities (IC50 = 6 ± 0.3, 6 ± 0.23, 7 ± 0.15, 8 ± 0.5 and 8 ± 0.45 µM, respectively) which are less than the standard drug cisplatin (IC50 = 5 ± 0.12 µM) but with possessing stronger selectivity (SI > 4.3, 4.3, 3, 2.9, and 2.9) towards PC-3 leaving normal cells unaffected (Table 4). The current results present new spirooxindole series as a promising anticancer agents and requires further mechanistic studies to determine the mechanism of anticancer activity and their selectivity to cancer cells.

2.3. Structure activity relationship (SAR)

Seemingly, all structural features of the spirooxindole compounds were active against colon cancer cells (HCT-116). The activities are varied due to the variation in the substituent of the aromatic ring. We have noticed that p-CF3 (4k; IC50 = 7 ± 0.27 µM, Table 2) was found to be the most active compound in this series. With p-methyl (4b); p-chloro (4c); 2,4-dichloro (4d); p-bromo (4f); m-fluoro; (4h) and m-bromo (4j) displayed more potent anticancer activity (4b; 9 ± 1.78; 4c; 11.5 ± 2; 4d; 9 ± 1.5; 4f; 11.3 ± 1; 4h; 9 ± 0.98; 4j; 9 ± 1 µM, respectively) comparable to standard drug cisplatin (IC50 = 12.6 ± 0.5 µM). Without any substitution on the benzene ring 4a, or having electron donating group such as methoxy group 4e or 4n and also if the phenyl ring replaced by heterocyclic aromatic rings such as thiophene 4l or furan 4m, the reactivity decreases dramatically.

In case of hepatocellular carcinoma (HepG2), only compound with p-CF3 substituent (4k; IC50 = 5.5 ± 0.2 µM, Table 3) showed activity equal to the standard drug cisplatin. On the other hand, 2,4-dichloro (4d); p-bromo (4f); and m-bromo (4j) displayed good anticancer activity (4d; 7 ± 1; 4f; 8 ± 1.56; 4j; 7 ± 1.5 µM, respectively) but less active than cisplatin with greater selectivity.

Finally in case of prostate cancer cells (PC-3); we noticed that the following variation 2,4-dichloro (4d); p-CF3 (4k); m-bromo (4j); p-bromo (4f); and m-fluoro (4h) exhibited lower activity (IC50 = 6 ± 0.3, 6 ± 0.23, 7 ± 0.15, 8 ± 0.5 and 8 ± 0.45 µM, respectively) than cisplatin (IC50 = 5 ± 0.12 µM) but with stronger selectivity (SI > 4.3, 4.3, 3, 2.9, and 2.9) (Table 4). Our attention was then directed to understand the structure activity relationship for these compounds with emphasis on the molecular weight and lipophilicity descriptors by molecular docking study.

2.4. Molecular docking study

Based on shape similarity of our compounds with reported spirooxindole standards and our previous finding [51], these compounds...
have the ability to inhibit MDM2-P53 interactions. The designed compounds (4a–n) and references spirooxindole drugs [46,48,52–55] were subjected to docking study with MDM2 that was retrieved from protein database (PDB code: 5law) [56]. Docking study was operated using OpenEye® scientific software [57].

To validate our study, the docking method started with standard spirooxindole (6SJ) [55]. 6SJ interacts in the receptor with consensus score 8 and showed hydrogen bond (HB) towards binding site of MDM2 coming from the NH of indole moiety (donor) with Leu 54: AA (acceptor) (supplementary data). This result was similiar to its scocrystalized pose [55].

Most of compounds lay in the active site with similar pose to the standard drug 6SJ but it showed hydrophobic-hydrophobic interactions without formation of HB. In particular compounds 4j and 4d (Figs. 3 and 4, respectively), which are active compounds, showed the best docking mode in this series of compounds with consensus score 76 and 68, respectively. Other compounds interact in the receptor active site and showed hydrogen bond (HB) towards binding site of MDM2. Compound 4k interacts with the receptor with consensus score 73 and forms HB coming from the NH of indole moiety (donor) with Leu 54: AA (acceptor). (Fig. 5). This interaction suggested that presence of substituted phenyl fragment acts as an armand so we can speculate that it is an important new pharmacophore.

Judging from these docking results and previous reported data [58–66], these class of compounds may be considered as non-peptide small molecules that inhibit the MDM2-p53 interaction and so highly effective in activation of p53 function.

2.5. Ligand efficiency (LE) and ligand lipophilic efficiency (LLE)

Determination of ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) properties, with special emphasis on the
lipophilicity, an essential parameter in drug development and drug design [67]. Currently, various helpful parameters “optimization measures” are used to correlate between the activities of compounds (pIC50) with their molecular size and lipophilicity (cLogP). These optimization assessments include ligand efficiency (LE) and lipophilic ligand efficiency (LLE) and the rule of three, [68,69].

2.5.1. Ligand efficiency (LE) scores

Medicinal chemists utilize LE, in drug discovery, to construct compounds with optimal combinations of physicochemical and pharmacological properties [67–69]. LE is used to assess the efficiency of compounds and to calculate its binding affinity (in terms of binding energy or pIC50) in relation to the number of heavy atoms in a molecule. This approach guides to compare the affinity of molecules corrected for their size. LE measures the average binding energy contribution per atom (non-hydrogen atom) instead of considering the potency or binding affinity of the whole compound. It can be calculated as showed in the following equations:

\[
LE = \frac{\Delta G}{N_{HA}}
\]

or \(LE = \frac{\text{pIC}_{50} \times 1.37}{N_{HA}}\)

where

\(\Delta G = \) Gibb’s free energy
\(\text{IC}_{50} = \) half-maximal inhibitory concentration (in term of molar concentration)
\(N_{HA} = \) non-hydrogen atom

The recommended LE value should be in the range of 0.3. The acceptable LE value should be higher than 0.3. Performing ligand efficiency analyses has practical utility in “lead optimization” towards “drug-like candidate” space. LE values for target compounds are represented in Table 5.

2.5.2. Ligand lipophilic efficiency (LLE)

LLE provides a way to determine the affinity of a compound with respect to its lipophilicity. LLE is defined as the difference between the potency and log P as illustrated in the following equation [69]:

\[
\text{LLE} = \text{pIC}_{50} - \text{cLog P}
\]

The challenge in drug discovery is to improve the activity with keeping lipophilicity in constant value. For this, LE is considered as an effective and practical tool of keeping lipophilicity under control to avoid any “molecular obesity” during drug optimization process. An acceptable lead compound should have LLE value ≥ 3 while LLE value ≥ 5 recommend a compound as a drug-like candidate. Monitoring LLE metric during lead optimization can highlight the price paid in lipophilicity on the expense of potency or binding affinity.

LE and LLE calculations, as illustrated in Table 5, were calculated based on the compounds IC50 against every cell line namely HCT-116, HepG2 and PC-3. Results indicated that most of these compounds

<table>
<thead>
<tr>
<th>#</th>
<th>4a–n</th>
<th>PC-3 (IC50, µM)</th>
<th>PC-3 (IC50, µg/ml)</th>
<th>VERO-B (IC50, µM)</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4a</td>
<td>30 ± 3.4</td>
<td>13.9</td>
<td>68</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>4b</td>
<td>15.3 ± 2.3</td>
<td>7.3</td>
<td>28</td>
<td>1.8</td>
</tr>
<tr>
<td>3</td>
<td>4c</td>
<td>18.4 ± 1.5</td>
<td>9.2</td>
<td>40</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>4d</td>
<td>6 ± 0.3</td>
<td>3.2</td>
<td>26</td>
<td>4.3</td>
</tr>
<tr>
<td>5</td>
<td>4e</td>
<td>24.6 ± 3</td>
<td>12.2</td>
<td>50</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>4f</td>
<td>8 ± 0.5</td>
<td>4.4</td>
<td>22</td>
<td>2.8</td>
</tr>
<tr>
<td>7</td>
<td>4g</td>
<td>16.8 ± 2</td>
<td>8.1</td>
<td>30</td>
<td>1.9</td>
</tr>
<tr>
<td>8</td>
<td>4h</td>
<td>8 ± 0.45</td>
<td>3.9</td>
<td>22</td>
<td>2.8</td>
</tr>
<tr>
<td>9</td>
<td>4i</td>
<td>17.7 ± 3</td>
<td>8.5</td>
<td>32</td>
<td>1.8</td>
</tr>
<tr>
<td>10</td>
<td>4j</td>
<td>7 ± 0.15</td>
<td>3.8</td>
<td>20</td>
<td>2.9</td>
</tr>
<tr>
<td>11</td>
<td>4k</td>
<td>6 ± 0.23</td>
<td>3.2</td>
<td>26</td>
<td>4.3</td>
</tr>
<tr>
<td>12</td>
<td>4l</td>
<td>25 ± 2.9</td>
<td>11.8</td>
<td>40</td>
<td>1.6</td>
</tr>
<tr>
<td>13</td>
<td>4m</td>
<td>18.5 ± 1.86</td>
<td>8.4</td>
<td>33</td>
<td>1.8</td>
</tr>
<tr>
<td>14</td>
<td>4n</td>
<td>18.5 ± 2</td>
<td>8.4</td>
<td>42</td>
<td>2.4</td>
</tr>
<tr>
<td>STD</td>
<td>cisplatin</td>
<td>5 ± 0.56</td>
<td>1.5</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4

The cytotoxic activity of the synthesized compounds against prostate cancer (PC-3) cell line. SI; selectivity index, IC50; the concentration that is required to kill 50% of cells. SD ± represent the standard deviation of triplicates.

Fig. 3. Snapshot visualization of 4j docked with ID: Slaw, showed hydrophobic-hydrophobic interaction without formation of HB interaction as illustrated by Vida.
revealed LE values 0.16–0.2. Compounds 4d, 4k, and 4j have reasonable LE values (0.2). Compound 4m has an acceptable LEE value (above 3) and compounds 4g, 4h, and 4l exhibited LEE values close to 3.

However, LLE values for other compounds were beyond the recommended limit (1.80–2.39) which means that there is a price paid in lipophilicity on the expense of the efficiency of the final compounds.

The pIC50, LE and LLE values for 4d and 4k indicated that optimization using phenyl substituent with low number of NHA.

3. Conclusion

In summary, the application of 1,3 dipolar cycloaddition provides
access to new series of spirooxindole derivatives in an efficient one-pot multicomponent reaction. This approach appears well-suited in preparing several analogues that may prove to generate potential anticancer derivatives of this class of unique spirooxindole alkaloids. Compounds 4k, 4d, 4j, 4f and 4h revealed broad activity against the tested three cancer cell lines with greater selectivity. The synthesized compounds interact with the receptor inside the active sites through hydrophobic-hydrophobic interaction as compound 4d.

Table 5

Summary of ligand efficiency scores for the target compounds.

<table>
<thead>
<tr>
<th>NHA</th>
<th>cLog P</th>
<th>HCT-116</th>
<th>HepG2</th>
<th>PC-3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pIC50</td>
<td>LE</td>
<td>LLE</td>
<td>pIC50</td>
</tr>
<tr>
<td>4a</td>
<td>2.03</td>
<td>4.52</td>
<td>0.18</td>
<td>2.49</td>
</tr>
<tr>
<td>4b</td>
<td>2.53</td>
<td>5.04</td>
<td>0.20</td>
<td>2.51</td>
</tr>
<tr>
<td>4c</td>
<td>2.74</td>
<td>4.94</td>
<td>0.19</td>
<td>2.2</td>
</tr>
<tr>
<td>4d</td>
<td>3.45</td>
<td>5.04</td>
<td>0.19</td>
<td>1.6</td>
</tr>
<tr>
<td>4e</td>
<td>1.95</td>
<td>4.58</td>
<td>0.17</td>
<td>2.63</td>
</tr>
<tr>
<td>4f</td>
<td>2.89</td>
<td>4.95</td>
<td>0.19</td>
<td>2.1</td>
</tr>
<tr>
<td>4g</td>
<td>2.17</td>
<td>4.88</td>
<td>0.17</td>
<td>2.71</td>
</tr>
<tr>
<td>4h</td>
<td>2.17</td>
<td>5.04</td>
<td>0.20</td>
<td>2.87</td>
</tr>
<tr>
<td>4i</td>
<td>2.53</td>
<td>4.81</td>
<td>0.19</td>
<td>2.28</td>
</tr>
<tr>
<td>4j</td>
<td>2.89</td>
<td>5.04</td>
<td>0.20</td>
<td>2.15</td>
</tr>
<tr>
<td>4k</td>
<td>2.91</td>
<td>5.15</td>
<td>0.19</td>
<td>2.24</td>
</tr>
<tr>
<td>4l</td>
<td>3.3</td>
<td>4.05</td>
<td>0.17</td>
<td>2.38</td>
</tr>
<tr>
<td>4m</td>
<td>3.3</td>
<td>4.39</td>
<td>0.18</td>
<td>3.19</td>
</tr>
<tr>
<td>6SJ</td>
<td>34</td>
<td>2.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

[36] C.B. Cui, H. Kakeya, H. Osada, Novel mammalian cell cycle inhibitors, spiro-
tryprostatin A and B, produced by Aspergillus fumigatus, which inhibit mamma-

[37] L.-Q. Zhao, B. Zhou, Y.-Q. Li, An efficient one-pot three-component reaction for
synthesis of spirooxindole derivatives in water media under catalyst-free condition,

[38] M.J. Kornet, A.P. Thio, Oxindole-3-spiropyrrolidines and -piperidines. Synthesis

[39] W. Tang, G. Eisenbrand, Uncaria rhynchophylla (Miq.) Jacks, Chinese Drugs of
Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern

[40] L.D. Quin, J.A. Tyrell, Fundamentals of Heterocyclic Chemistry: Importance in

[42] Y. Zhao, et al., Discovery of new spiro [3H-indole-3,2′-pyrrolidin]-2(1H)-one
compounds as chemically stable and orally active inhibitors of the MDM2–p53

[43] A. Gonzalez, et al., Selective and potent morpholinone inhibitors of the

[44] C. Zhuang, et al., Discovery, synthesis, and biological evaluation of orally active
pyrrolidone derivatives as novel inhibitors of p53-MDM2 protein–protein interac-

variants of MDM2 MRNA, is associated with prognosis in soft tissue sarcoma, Int.

[46] A. Fensome, et al., New progesterone receptor antagonists: 3,3-disubstituted-5-ar-