Studies on ovarian reproductive affections in slaughtered she-camels

Hamed T. Elbaz¹,*, Ahmed Dawod²
¹Theriogenology Department, Faculty of Veterinary Medicine, University of Sadat City, Menofia, Egypt

Abstract

The study was conducted to investigate the different ovarian reproductive affections in dromedary camel (Camelus dromedarius) after slaughtering. The ovaries (n=500) non-pregnant females were collected with unknown breeding history during breeding and non-breeding season and examined grossly and ovarian follicle's diameter was measured. The abnormalities were recorded in 35 ovaries (7%). The ovarian affection were follicular cysts (3%), luteinized cysts (1%), haemorrhagic cysts (1%), Organized cysts with fibrin clotting (0.8%), Ovarian agenesis (0.8%) and Ovarian hypoplasia (0.4%). There was no effect of season on the incidence of ovarian affections.

The study confirmed that the follicular, luteal cysts and haemorrhagic cysts were the most common ovarian affections and these affections seem to play a role on ovarian dysfunction, production and infertility in dromedary camel.

Keywords: Dromedary camel, Ovary, Ovarian cysts, Infertility.

Introduction

Reproductive efficiency in the female dromedary is low when compared with other domesticated species. This is due to delay in the onset of puberty, increased age at first conception and first calving and long interval between births (Kafi et al., 2002 and Skidmore, 2004). Despite the benefits of camels regarding their meat and milk, camel production is still not undertaken on a commercial scale (Abdel-Aziz,
Pathological examination of the ovaries provides definite information more accurately than that obtained by clinical examinations. Anatomical abnormalities and pathological processes of female reproductive tract have also been reported as the main causes of infertility (Deen, 2013). Cystic ovarian disease (COD) is an important ovarian dysfunction and a major cause of reproductive failure in dairy cattle. It is generally accepted that disruption of the hypothalamo-pituitary-gonadal axis by endogenous and/or exogenous factors, causes cyst formation (Vanholder et al., 2006). The evolution of the dominant follicle in the absence of mating presents two possible outcomes: regression or cystic degeneration in the form of an anovulatory follicle (Skidmore et al. 1995; Tibary and Anouassi, 1996 and Derar, 2003). The incidence of cystic and inactive ovaries among female camels has been found to increase in summer (Hegazy et al., 2001). Follicular, luteal cysts, infundibular cysts and haemorrhagic cysts were the most common ovarian abnormalities and these abnormalities seem to play a role on ovarian dysfunction (Hamouda et al., 2011). Ovarian agenesis were recorded in camels (Dafalla et al., 1991). Ovarian hypoplasia characterized by absence of ovarian follicular activity due to genital and chromosomal abnormalities (Tibary and Anouassi, 2001).

The aim of the study to investigate the incidence of common ovarian abnormalities in she-camels in breeding and non-breeding season.

Materials and Methods

Dromedary camel ovaries (n= 500) non-pregnant were collected from El-Bassatein slaughterhouse in Cairo and Nahia slaughterhouse in Giza during the breeding season (December to April) and the non-breeding season (June to October) during the period from 2015-2016. The reproductive history of the slaughtered animals was unknown. The
ovarian tissues were collected after slaughtering and examined grossly for abnormalities. Ovarian follicle's diameter was measured and follicular fluid was aspirated.

Statistical analysis

The seasonal incidence of ovarian affections was recorded and compared using Chi-square \(\chi^2 \) analysis (Snedecor and Cochran, 1989).

Results

The ovarian affections were recorded in (35) out of \(n=500 \) ovary (7%). There was no effect of season on the incidence of ovarian affections as shown in table (1) and (2).

Table 1: Ratios and percentages of seasonal incidence of ovarian affection in she-camels.

<table>
<thead>
<tr>
<th>season</th>
<th>total</th>
<th>Ovarian affection</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Follicular cysts</td>
<td>Luteal cysts</td>
<td>Hemorrhagic cysts</td>
<td>Organized cysts with fibrin clotting</td>
<td>Ovarian agenesis</td>
<td>ovarian hypoplasia</td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Breeding</td>
<td>300</td>
<td>6</td>
<td>2.00</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>0.67</td>
<td>16</td>
<td>5.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-breeding</td>
<td>200</td>
<td>9</td>
<td>4.50</td>
<td>3</td>
<td>1.50</td>
<td>3</td>
<td>1.50</td>
<td>2</td>
<td>1.00</td>
<td>2</td>
<td>1.00</td>
<td>19</td>
<td>9.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>500</td>
<td>15</td>
<td>3.00</td>
<td>5</td>
<td>1.00</td>
<td>5</td>
<td>1.00</td>
<td>4</td>
<td>0.80</td>
<td>4</td>
<td>0.80</td>
<td>2</td>
<td>0.40</td>
<td>35</td>
<td>7.00</td>
</tr>
</tbody>
</table>
Table 2: Effect of season on incidence of ovarian affections in she-camel

<table>
<thead>
<tr>
<th>season</th>
<th>total</th>
<th>Ovarian affection</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Follicular cysts</td>
<td>Luteal cysts</td>
<td>Hemorrhagic cysts</td>
<td>Organized cysts with fibrin clotting</td>
<td>Ovarian agenesis</td>
<td>Ovarian hypoplasia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
</tr>
<tr>
<td>Breeding</td>
<td>300</td>
<td>6</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>0.67</td>
<td>2</td>
<td>0.67</td>
</tr>
<tr>
<td>Non-bred</td>
<td>200</td>
<td>9</td>
<td>4.5</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chi-square χ²</td>
<td>2.58</td>
<td>0.84</td>
<td>0.84</td>
<td>0.17</td>
<td>0.17</td>
<td>1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence of error</td>
<td>p≤ 0.05</td>
<td>p≤ 0.05</td>
<td>p≤ 0.05</td>
<td>p≤ 0.05</td>
<td>p≤ 0.05</td>
<td>p≤ 0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Follicular cysts

Follicular cysts represent (3%) unilateral or bilateral either single or multiple cysts but mostly in a single manner (Fig.1). The cysts were thin walled, well vascularized or slightly opaque and filled with a straw coloured serous fluid. The diameter ranged from 17-40 mm.

2. Luteal cysts

Luteal cysts represent (1%). The cysts were thick walled and became partially or totally opaque, tense in consistency with grayish yellow in colour. The follicular fluid reach 22 ml after aspiration (Fig.2). The size of cyst can reach 50 mm in diameter.

3. Haemorrhagic Cysts

Haemorrhagic Cysts represent (1%). The cyst was single, thick wall, unilateral or bilateral and contains bloody follicular fluid reach 8 ml after aspiration (Fig.3). The diameter ranged from 10-25 mm.
4. Organized cyst with fibrin clotting

Organized cysts with fibrin clotting represent (0.8%). The cysts were large, thick wall and contain white or yellowish fluid like soup or organized clot like cheesy material appear after incision (Fig.4). The size of cyst can reach 50 mm in diameter with darkened surface.

5. Ovarian agenesis

Ovarian agenesis represents (0.8%). This condition was unilateral or bilateral. Unilateral characterized by the right ovary had a large bulging follicle but the left one have small fatty mass (Fig.5). Bilateral characterized by fallopian tube ended up in a well-developed bursa that contained a small fatty tissue mass like the size of pea and the rest of genital tract was normal.

6. Ovarian hypoplasia

Ovarian hypoplasia represents (0.4%). the ovaries were in the form of small, thin and firm structure without any small follicles and measured (10 mm X 5 mm and 8 mm X 5 mm in length X breadth) for left and right ovary, respectively and the rest of genital tract was normal (Fig.6).
Fig.1: Ovary containing Follicular cyst characterized by large, thin wall contain serous clear follicular fluid (A) single small cyst (B) large cyst 40mm in diameter (C) double cyst.

Fig.2 Ovary containing large luteal cyst characterized by thick walled contain serous clear follicular fluid (A) double cyst (B) large cyst 50 mm in diameter (C) 22 ml follicular fluid after aspiration from luteinized cyst.

Fig.3 Haemorrhagic cyst (A) bi-lateral bloody follicles (B) 8 ml blood after aspiration from bloody follicle.
Fig. 4 Organized cyst (A) double and bilateral cyst (B) white or yellowish fluid like soup after incision cyst (C) organized cyst 40 mm in diameter (D) organized clot like cheesy material inside cyst appear after incision.

Fig. 5 Ovarian agenesis (A) bilateral, (B) Left unilateral agenesis with normal right ovary and have large follicle.
Fig. 6 Ovarian hypoplasia (A) left ovary 10 mm (B) right ovary 8 mm in length.

Discussion

The incidence and pathology of the genital tract affections of she camel provide valuable information that can be used in evaluation of animal reproduction. The present study revealed that the total incidence of ovarian affections was 7% of all examined ovaries of she camels. This incidence was nearly similar to that recorded by (Shawky et al., 2004 and Hamouda et al., 2011) who found that the incidence of ovarian affections of she camel was 10.4% and 10.16% respectively, while lower incidence (4.49%) was recorded by (Ribadu et al., 1991).

Previous studies reported that the cystic conditions of the ovary represent the major disorders of the total ovarian affections. Incidence of ovarian cysts in she camels varied from 0.9% (El-Wishy, 1989), 3.39% (Fetaih, 1991), 3.83% (Hamouda et al., 2011) to 5.2% (Shawky et al., 2004). Ovarian cysts did not constitute a major infertility problem in the investigated female camels. Although ovarian cysts have been described in dromedaries (El-Wishy, 1990; El-Khoully et al., 1990), the cystic ovary condition is not well documented as in cattle or other domestic animals. In fact, the term "cystic ovaries" does not always apply to
Camelidae because some females develop follicular cyst if not bred, as ovulation in these species is induced (Tibary et al., 2005).

Follicular, luteal and haemorrhagic cysts are a normal evolution of the non-ovulatory follicle (functional cysts). The presence of these cysts indicates ovulation failure which may be caused by inadequate LH release in response to copulation (Skidmore et al., 1995). This lack or insufficient LH release could be due to a hypothalamo-pituitary function disturbance or to a reduce stimulatory effect of copulation. However, in Bacterian camel, some males have low fertility because they tend to achieve lower ovulation rates than others due to a reduced concentration of a GnRH-like factor in semen (Zhao et al., 1994).

Ovarian cysts were classified in this study according to the structure involved and their appearance. Follicular cysts represented 3% of all examined ovaries and the incidence of follicular cysts was higher than that of recorded luteal cysts in the present work (1%). The luteal cysts originate from luteinization of follicular cyst, which occurred as a result of transformation of the granulosa cells into lutein cells. Similar results were obtained by (Shawky et al., 2004). Non-ovulating follicle continued to grow and reached a maximum diameter (30 - 50 mm) diameter felt as goose egg with some fluctuation which agree with findings obtained by Tibary and Anouassi (2000).

Haemorrhagic cysts were detected in this study with an incidence of (1%) of all examined ovaries. In the previous studies the incidence of hemorrhagic cysts in she camel were (1.4%) by (Shawky et al., 2004), (1.33%) by (Hamouda et al., 2011). Adams et al., (1991) suggested that the high incidence of hemorrhagic follicles in non-mated Llamas was not pathologic. Moreover, Tibary and Anouassi (1996) mentioned that,
Follicular and hemorrhagic cysts are a normal evolution of non-ovulatory follicles in 30 to 40% of female camels. However, up till now it is not well known whether this type of cyst is a true abnormality or a physiological state. This seems probable that these cysts may be due to some pathological changes during growth of a follicular cyst resulting in quick bleeding with accumulation of the blood within the cyst forming a hemorrhagic cyst. Therefore, further studies are needed to clarify the mechanism of development of hemorrhagic cysts in camels.

The results of the present study revealed that there is no effect of the season on different ovarian abnormalities. These findings are in accordance with the findings of Hamouda et al. (2011).

Miscellaneous causes of female camel’s infertility included anomalies of the ovary. It might be interesting to record bilateral and unilateral ovarian agenesis during the collection of 500 ovaries which is in agreement, in part, with the results of (Dafalla et al., 1991) who examined about 900 female genital tracts and recorded only one case of unilateral ovarian agenesis. While (Musa, 1984) examined 722 camels for presence of anomalies and he did not observe ovarian agenesis. Also (El-Wishy, 1989) carried a similar survey and examined 1048 genital organs from non-pregnant camels and 497 from pregnant ones and he did not report such conditions. In recent study by (Abou-Nawwara, 2006) who examined 270 genital tracts of camels after slaughtering and he did not report such conditions. The rest of genital tract in case of unilateral and bilateral ovarian agenesis was normal in this study. But (Kennedy and Miller, 1993) revealed that the tubular genitalia may be absent or underdeveloped in bilateral ovarian agenesis.

Ovarian hypoplasia was diagnosed in one case. It was bilateral and the ovary was very small, oval in shape and measured (10 mm X 5 mm
and 8 mm X 5 mm) in length X breadth for left and right ovary, respectively. Similar findings were revealed by (Melaku et al. 2015).

Conclusion

Cystic Ovaries was the most prevalent pathological conditions among the recorded ovarian affections and represented mainly by follicular cysts followed by luteal cysts and haemorrhagic cysts and these affections seem to play a role on ovarian dysfunction, production and infertility in dromedary camel.

References

Abdel-Aziz, A.S. and Nasser, A.A.(2013):

Abou-Nawwara, A. T. (2006):

Deen, A. (2013):
Derar, D. R. (2003):

“Some pathologic affections of camel ovaries in U.A.E.”

Genital abnormalities of the female camel dromedary. An abattoir survey.
Zuchthygiens(2): 84-87.

El-Wishy, A.B. (1990):
“Genital abnormalities in camels (Camelus Dromedarius)”.

Pathologic Studies on Ovarian Abnormalities in Nagas (Camelus Dromedarius) In Al – Ahsa, Saudi Arabia.
Scientific Journal of King Faisal University (Basic and Applied Sciences) Vol.12No. (1) 1432

Pathological and microbiological studies on the reproductive tract of the female camel.

Changes in ultrastructural/ timing of in vitro maturation of camel oocytes.
Advances in reproduction, VI: 19.

